Cytotoxicity of Rhamnosylanthraquinones and Rhamnosylanthrones from Rhamnus nepalensis

Le Phuong Mai, ${ }^{\dagger}$ Françoise Guéritte, ${ }^{\dagger}$ Vincent Dumontet, ${ }^{\dagger}$ Mai Van Tri, $\neq \perp$ Bridget Hill, ${ }^{\S}$ Odile Thoison, ${ }^{\dagger}$ Daniel Guénard, ${ }^{\dagger}$ and Thierry Sévenet*,t
Institut de Chimie des Substances Naturelles, Centre National de Ia Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France, Institute of Chemistry, National Center for Science and Technology, Hoang Quoc Viet Road, Nghia Do, Cau Giay, Hanoi, Vietnam, and Centre de Recherches Pierre Fabre, AvenueJ ean Moulin, Castres Cedex, France

Received J anuary 26, 2001

Abstract

An extract of the fruits of Rhamnus nepalensis collected in Hoa Binh Province, Vietnam, was cytotoxic to $K B$ cells. A bioassay-guided fractionation led to the isolation of a series of known anthraquinones and anthrones, one new rhamnosylanthraquinone, 3'-O-acetylfrangulin A (8), several new rhamnosylanthrones, the prinoidin-emodin bianthrones (9A-D), the prinoidin bianthrones (10A,B), and the rhamnepalins (11A-C). A structure-cytotoxic activity relationship study was performed on these isolates and some semisynthetic derivatives.

The genus Rhamnus (Rhamnaceae), which is encountered both in temperate and in tropical countries, includes well-known medicinal species possessing various biol ogical properties, for example R. cathartica, ${ }^{1}$ R. frangula, and R. purshiana. Generally, Rhamnus species contain anthraquinones such as emodin ${ }^{2-8}$ or chrysophanol, $3,6,8,9$ their reduced forms, chrysophanol-anthrone ${ }^{3}$ and emodinanthrone, ${ }^{3-5}$ dimers such as chrysophanol bianthrone, ${ }^{9}$ emodin bianthrones, ${ }^{3-5}$ and chrysophanol-emodin bianthrones ${ }^{3,10}$ (unknown configuration), or their glycosides such as prinoidin, 4,5 while some others contain flavonoids. ${ }^{2,5,7,8,12,13}$ Some of these anthraquinones have been found to have antileukemic, cytotoxic, laxative (or purgative), photosensitizing, and vasorelaxant properties. ${ }^{8,14,15}$ In the course of our ongoing search for anticancer agents from natural sources, an ethyl acetate extract of the fruits of Rhamnus nepalensis Laws. (Rhamnaceae), collected in Vietnam, was found to be cytotoxic to the KB cell line. Previously, emodin and known flavones have been isolated from R. nipalensis Laws., collected in Pachmari, India, ${ }^{2}$ a species presumably identical to R. nepalensis Laws. Bio-assay-guided fractionation of an extract of fruit of R. nepalensis led to the isolation of 21 anthraquinones and anthrones, of which 10 are new. We report here the isolation of these compounds, the structure elucidation of the new compounds, and a study of the structure-cytotoxicity relationships in this series.

Results and Discussion

Dried and powdered fruits of R. nepalensis were first defatted with hexane, then extracted with EtOAc. Cyto-toxicity-guided purification by column chromatography under medium-pressure TLC and HPLC on Si gel allowed the isolation of 11 known compounds, namely, chrysophanol ${ }^{3,6,8,9}$ physcion, ${ }^{2,4,6,8,9}$ emodin, ${ }^{2,4,6-8}$ emodin-anthrone, ${ }^{3-5,10}$ prinoidin (1), ${ }^{4,5} 2^{\prime}, 3^{\prime}$-di-O-acetylfrangulin A (2), ${ }^{5} 2^{\prime}$-Oacetylfrangulin A (3), ${ }^{5}$ frangulin A peracetate (4), ${ }^{5}$ chrysophanol bianthrones (5A,B), ${ }^{9}$ two chrysophanol-emodin bian-

[^0]thrones 6 (stereochemistry at C10/C10 unknown), 3,10 emodin bianthrones (7A,B), and 10 new compounds, 3'-O-acetylfrangulin A (8), four prinoidin-emodin bianthrones (9AD), two prinoidin bianthrones (10A,B), and three rhamnepalins (11A-C) (Chart 1). The known compounds were readily identified by comparison of their spectroscopic data with those of reference samples or as described in the literature. However, the NMR spectrum of compound $\mathbf{5}$ was recorded on a mixture of cis and trans compounds. HPLC separation on an analytical chiral column clearly shows the presence of the three isomers (Table 1). The mixture of the compounds 5A and 5B was purified on a chiral column to give 5A (cis) and 5B (trans), which were used only for evaluation of the cytotoxicity.

Compound 8 exhibited a major peak $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 459.1291 (HRCIMS) which matched the molecular formula $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{10}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8 were similar to those of 2'-O-acetylfrangulin A (3) except that in the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 the signal of $\mathrm{H}-2^{\prime}$ was shielded from δ 5.23 to 4.95 , and $\mathrm{H}-3^{\prime}$ appeared at $\delta 5.98$. Compound $\mathbf{8}$ was thus assigned as 3'-O-acetylfrangulin A, a regioisomer of 3 with the acetyl group at C-3'.

The four C-10, C-10' diastereomers of prinoidin-emodin bianthrones 9A-D were each isolated by preparativeTLC on silica gel. These compounds gave a major peak [$\mathrm{M}+$ $\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 741.2183$ (HRCIMS) corresponding to the molecular formula $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{14}$. Their structures were deduced from a comparison of their NMR data with those of prinoidin (1), emodin, and emodin bianthrones. The signals of $\mathrm{H}-10$ and $\mathrm{H}-10^{\prime}$ differed from 9A to 9D. In the ${ }^{1} \mathrm{H}$ spectrum of compounds 9A, 9B, and 9C, they both appeared as two doublets ($\mathrm{J}=3 \mathrm{~Hz}$) at $\delta 4.18$ and 4.10 (9A), $\delta 4 / 13$ and 4.03 (9B), and $\delta 4.10$ and $4.00(9 \mathrm{C})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 9D revealed a 2 H singlet at $\delta 4.21$, corresponding to these two protons (Tables 2 and 3). NOESY correlations did not permit a determination of the stereochemistry at C-10 and C-10 in compounds 9A-D.

Prinoidin bianthrones 10A and 10B revealed a peak [M $+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 971.2974\left(\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}\right.$ by HRCIMS). The H-10 and $\mathrm{H}-10^{\prime}$ signals appeared as one 2 H singlet at 4.41 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum of 10A, while in 10B these same protons in 10 and 10^{\prime} resonated at $4.32 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}$, 1 H) and $4.38 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, 1 \mathrm{H})$. This indicates that

Chart 1

$1 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{OAc}, \mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{OH}$
$13 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{COCH}_{3}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{OAc}, \mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{OH}$

9A - D R = 2", 3"-di- O-acetylrhamnose, $\mathrm{R}^{\prime}=\mathrm{OH}$
10A, 10B $\mathrm{R}=2^{\prime \prime}, 3$ "-di- O-acetylrhamnose
$\mathrm{R}^{\prime}=2^{\prime \prime}, 3^{\prime \prime}$-di- O-acetylrhamnose
11A-C R = 2", 3"-di- O-acetylrhamnose
$R^{\prime}=2^{\prime \prime}, 4^{\prime \prime \prime}$-di- O-acetylrhamnose

2",3"-di-O-acetylrhamnose

2 ", 4 "'-di- O-acetylrhamnose

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Compounds 5-7

carbon	5A, ${ }^{\text {a }}$	6A, ${ }^{\text {b }}$	6C, ${ }^{\text {b }}$	$7 A^{\text {c }}$	$7 B^{\text {c }}$
2	6.68 d (1.0)	6.64 brs	6.61 brs	6.30 brs	6.37 brs
4	6.00 d (1.0)	6.14 brs	5.82 s	6.68 brs	6.59 brs
5	6.68 dd (1.0, 8.0)	6.78 d (7.8)	$6.91 \mathrm{~d}(7.8)$	6.25 d (2.0)	6.33 d (2.0)
6	7.41 t (8.0)	7.28 d (7.8)	7.45 t (7.8)		
7	6.89 dd (1.0, 8.0)	6.35 d (7.8)	6.70 d (7.8)	6.15 d (2.0)	6.07 brs
10	4.49 s	4.37 d (3.0)	4.42 d (3.0)	4.55 s	4.55 s
$\mathrm{OH}-1$	11.63 s			11.85 s	11.75 s
OH-8	11.85 s			11.97 s	12.05 s
$\mathrm{CH}_{3}-3$	2.25 s	2.27 s	2.20 s	2.27 s	2.20 s
$2 '$	6.60 d (1.0)	6.59 brs	6.59 brs	6.30 brs	6.37 brs
4^{\prime}	$5.70 \mathrm{~d}(1.0)$	6.02 brs	5.62 s	6.68 brs	6.59 brs
5	$6.29 \mathrm{dd}(1.0,8.0)$	6.19 d (2.0)	6.30 d (2.0)	6.25 d (2.0)	6.33 d (2.0)
$6{ }^{\prime}$	7.29 t (8.0)				
7^{\prime}	6.81 dd (1.0, 8.0)	5.82 d (2.0)	6.20 d (2.0)	6.15 d (2.0)	6.07 brs
10^{\prime}	4.51 s	4.23 d (3.0)	4.25 d (3.0)	4.55 s	4.55 s
$\mathrm{OH}-1^{\prime}$	11.58 s			11.85 s	11.75 s
$\mathrm{OH}-8{ }^{\prime}$	11.75 s			11.97 s	12.05 s
$\mathrm{CH}_{3}-3^{\prime}$	2.15 s	2.21 s	2.17 s	2.27	2.20 s

${ }^{\text {a }} \mathrm{CDCl}_{3} \cdot{ }^{\text {b }} \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 95: 5 ;$ c Acetone d_{6}.

10A and 10B are a mixture of C-10/C-10' isomers, and these were not separable in the various HPLC conditions used (Tables 2 and 3).

Rhamnepalins (11A-C) gave a $[\mathrm{M}+\mathrm{H}]^{+}$peak at m / z 971.2979 (HRFABMS), which matched the molecular formula $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}$. In the ${ }^{1} \mathrm{H}$ NMR spectra, protons $\mathrm{H}-10$ and $\mathrm{H}-10^{\prime}$ appeared as singlets at $\delta 4.33(2 \mathrm{H}), 4.37(2 \mathrm{H})$, and $4.36(2 \mathrm{H})$, respectively (Tables 2 and 3). A fourth expected isomer has not been isolated. HMBC correlations allowed us to observe two different sequences for the rhamnose part
of compounds 11A-C, one being H-4" (-OH), $\mathrm{H}-3^{\prime \prime}(-\mathrm{OAc})$, $\mathrm{H}-2^{\prime \prime}(-\mathrm{OAc})$ and the other $\mathrm{H}-4^{\prime \prime \prime}(-\mathrm{OAc}), \mathrm{H}-3^{\prime \prime \prime}(-\mathrm{OH})$, H-2"' (-OAc), which means that compounds 11A, 11B, and 11C are all prinoidin-2'", $4^{\prime \prime \prime}$-di-O-acetyl rhamnoside-emodin bianthrones. We propose the trivial name rhamnepalins for these compounds.
Some of the bianthrones isolated are possibly artifacts formed during the extraction and purification processes, as the treatment of prinoidin (1) by MeOH and SiO_{2} under mild conditions led to a mixture of prinoidin bianthrones
Table 2. ${ }^{1}$ NMR Data for Compounds 9-11 ${ }^{\text {a }}(\delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz})$

carbon	9A	9B	9C	9D	10A	10B	11A	11B	11C
2	6.61 s	6.58 s	6.55 s	6.70 s	6.85 s	6.74 s	6.62 s	6.75 s	6.76 s
4	6.12 s	5.60 s	5.55 s	6.18 s	6.82 s	6.83 brs	5.73 s	6.62 s	6.76 s
5	5.75 d (2.0)	6.30 s	6.30 d (2.0)	5.92 d (2.0)	5.16 d (2.3)	6.72 d (2.3)	6.49 s	6.70 s	6.63 s
7	6.55 d (2.0)	6.65 d (2.0)	6.69 d (2.0)	6.60 d (2.0)	6.45 d (2.3)	6.66 d (2.3)	6.68 d (2.1)	6.53 s	6.67 s
10	4.18 d (3.0)	4.13 d (3.0)	4.10 d (3.0)	4.21 s	4.41 s	4.38 d (3.2)	4.33 s	4.37 s	4.36 s
$\mathrm{CH}_{3}-3$	2.27 s	2.10 s	2.12 s	2.43 s	2.45 s	2.43 s	2.21 s	2.40 s	2.43 s
2 '	6.61 s	6.55 s	6.50 s	6.63 s	6.85 s	6.55 s	6.62 s	6.62 s	6.58 s
4^{\prime}	6.02 s	5.45 s	5.40 s	6.00 s	6.82 s	6.72 s	5.71 s	5.61 s	5.58 s
$5{ }^{\prime}$	5.70 d (2.0)	6.28 d (2.0)	6.30 d (2.0)	5.89 d (2.0)	5.16 d (2.3)	5.32 d (2.3)	6.49 brs	6.50 brs	5.47 brs
$7{ }^{\prime}$	$6.32 \mathrm{~d}(2.0)$	$6.42 \mathrm{~d}(2.0)$	6.45 d (2.0)	6.40 d (2.0)	6.45 d (2.3)	$6.42 \mathrm{~d}(2.3)$	6.66 d (2.2)	5.52 s	6.47 s
10^{\prime}	4.10 d (3.0)	4.03 d (3.0)	4.00 d (3.0)	4.21 s	4.41 s	4.32 d (3.2)	4.33 s	4.37 s	4.35 s
$\mathrm{CH}_{3}-3{ }^{\prime}$	2.27 s	2.10 s	2.12	2.30 s	2.45 s	2.08 s	2.21 s	2.17 s	2.16 s
$1{ }^{\prime \prime}$	5.50 d (2.0)	5.55 s	5.60 d (2.0)	5.50 brs	5.34 brs $^{\text {b }}$	$5.73 \mathrm{brs}^{\text {b }}$	5.58 brs	5.37 s	5.61 s
2"	5.37 m	5.50 brs	5.55 s	5.55 d (3.0)	$5.23 \mathrm{mb}^{\text {b }}$	$5.47 \mathrm{brs}^{\text {b }}$	5.48 brs	5.29 s	5.47 brs
3"	5.31 t (3.0)	5.40 d (3.0)	$5.43 \mathrm{dd}(3.5,9.6)$	5.38 dd (3.5, 9.0)	$5.26 \mathrm{mb}^{\text {b }}$	5.38 dd (3.0, 10) ${ }^{\text {b }}$	5.34 dd (3.4, 9.7)	5.25 s	5.35 dd (3.4, 9.6)
$4^{\prime \prime}$	3.75 t (9.9)	3.92 m	3.85 m	3.80 t (9.6)	3.62 t (9.7) ${ }^{\text {b }}$	$3.69 \mathrm{mb}^{\text {b }}$	3.75 t (9.7)	3.67 d (9.7)	3.75 t (9.6)
5"	3.85 m	3.88 m	3.85 m	3.85 m	$3.73 \mathrm{mb}^{\mathrm{b}}$	$3.89 \mathrm{mb}^{\text {b }}$	3.82 m	3.79 m	3.83 m
$6^{\prime \prime}$	1.40 d (6.0)	1.40 d (6.0)	1.40 d (6.0)	1.42 d (6.0)	$1.37 \mathrm{~d}(6.0)^{\text {b }}$	$1.32 \mathrm{~d}(6.0)^{\text {b }}$	1.35 d (6.0)	1.41 d (6.0)	1.37 d (6.5)
$1^{\prime \prime \prime}$							5.68 s	5.72 s	5.39 s
$2^{\prime \prime \prime}$							5.31 brs	5.33 brs	5.17 s
$3^{\prime \prime \prime}$							4.26 dd (3.5, 9.6)	4.26 d (9.2)	4.15 m
$4^{\prime \prime \prime}$							4.96 t (9.8)	4.97 t (9.7)	4.92 t (9.8)
$5^{\prime \prime \prime}$							$3.89 \mathrm{dt}(3.5,9.6)$	$3.92 \mathrm{dt}(3.5,9.6)$	$3.89 \mathrm{dt}(3.4,9.5)$
$6^{\prime \prime \prime}$							1.21 d (6.1)	1.21 d (6.1)	1.23 d (6.0)
$\mathrm{OH}-1$	11.80 s	11.60 s	11.55 s	11.80 s	12.00 s	11.58 s	11.60 s	11.60 s	11.80 s
$\mathrm{OH}-1^{\prime}$	11.75 s	11.62 s	11.60 s	11.79 s	12.00 s	11.75 s	11.60 s	11.80 s	11.60 s
$\mathrm{OH}-8$	12.10 s	11.90 s	12.18 s	12.05 s	11.90 s	11.83 s	12.10 s	11.90 s	12.0 s
$\mathrm{OH}-8{ }^{\prime}$	12.10 s	12.10 s	12.21 s	12.05 s	11.90 s	12.30 s	12.10 s	12.20 s	11.9 s
$\mathrm{CH}_{3} \mathrm{CO}-2^{\prime \prime}$	2.20 s	2.30 s	2.22 s	2.20 s	$2.11 \mathrm{~s}^{\text {c }}$	$2.20 \mathrm{sc}^{\text {c }}$	2.26 s	2.13 s	2.20 s
$\mathrm{CH}_{3} \mathrm{CO}-2^{\prime \prime \prime}$							2.20 s	2.16 s	2.20 s
$\mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime}$	2.12 s	2.20 s	2.18 s	2.12 s	$2.15 \mathrm{~s}^{\mathrm{c}}$	$2.11 \mathrm{~s}^{\mathrm{c}}$	$2.14 \mathrm{~s}$	$2.24 \mathrm{~s}$	$2.18 \mathrm{~s}$
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime \prime} \\ & \mathrm{CH}_{3} \mathrm{CO}-4^{\prime \prime \prime} \end{aligned}$							2.14 s	2.11 s	2.13 s

[^1]Table 3. ${ }^{13} \mathrm{C}$ Assignments for Compounds 9-11 ($\left.\delta \mathrm{ppm}\right)^{\mathrm{a}}$

no.	9A	9B	9C	9D	10A	10B	11A	11B	11C
1	161.6	162.0	162.4	161.9	161.3	161.8	162.0	162.9	162.2
2	117.2	116.8	117.3	116.9	117.6	117.1	117.1	117.7	117.2
3	147.2	146.2	147.0	147.0	148.3	147.6	147.3	148.0	148.6
4	121.0	121.0	121.2	120.7	121.1	120.6	121.3	121.2	121.3
5	109.2	109.4	109.8	110.0	110.1	108.7	109.2	109.9	107.3
6	160.4	161.5	161.6	161.1	159.8	161.2	160.9	160.7	161.8
7	102.5	102.3	102.8	102.0	101.9	104.2	103.3	104.0	102.9
8	164.7	164.1	164.7	164.3	164.8	163.4	164.3	165.7	164.8
9	190.5	190.5	190.6	190.1	190.7	190.5	192.0	191.1	191.8
10	56.3	56.4	59.6	56.2	55.8	56.8	56.3	56.9	56.4
1 a	114.0	114.0	113.6	114.9	115.4	115.5	115.8	115.6	115.1
4a	140.4	139.0	139.0	140.5	140.8	140.6	141.8	141.7	141.8
5a	143.5	144.2	144.7	144.0	142.3	144.9	144.8	144.9	145.0
8 a	112.0	113.0	112.8	112.0	113.6	112.8	113.5	113.1	113.7
CH_{3-3}	22.1	21.6	22.1	22.9	22.4	22.5	22.1	22.7	22.8
$1{ }^{\prime}$	162.5	162.0	162.3	161.9	161.3	162.2	162.1	162.5	162.4
$2 '$	117.2	116.8	117.3	116.9	117.6	117.1	117.1	117.7	117.2
3	147.2	146.5	146.7	146.9	148.3	147.0	147.1	147.7	147.8
4^{\prime}	121.0	121.0	121.5	120.7	121.1	121.8	120.5	122.0	120.6
5	108.7	107.9	108.4	108.2	110.1	109.4	108.9	109.5	109.0
$6{ }^{\prime}$	161.8	162.2	163.0	162.5	159.8	159.6	160.9	162.2	160.5
7	102.5	102.3	102.8	102.5	101.9	101.7	102.0	102.7	102.6
8^{\prime}	164.4	164.1	164.5	164.3	164.8	164.4	163.7	164.3	165.0
9	190.4	190.5	190.4	190.1	190.7	190.2	191.8	190.9	191.8
10^{\prime}	56.3	56.4	56.9	56.2	55.8	56.7	56.0	56.7	56.2
$1 a^{\prime}$	114.0	114.0	113.6	114.9	115.4	113.3	115.6	114.1	113.8
$4 a^{\prime}$	140.4	139.0	139.2	140.0	140.8	138.1	141.5	139.4	139.8
$5 a^{\prime}$	142.9	144.5	145.2	143.5	142.3	142.2	145.0	142.2	142.4
$8 a^{\prime}$	111.0	112.0	111.7	111.0	113.6	111.1	112.8	111.9	111.8
CH_{3-3}	22.1	21.6	22.1	22.9	22.4	21.0	21.8	22.5	22.5
$1^{\prime \prime}$	95.1	95.6	96.0	96.0	94.7	95.1	95.3	95.5	95.7
$2 \prime$	69.9	69.4	70.1	69.4	71.4	71.4	69.8	70.4	69.6
$3 \prime$	71.8	71.9	72.2	71.9	69.8	69.5	71.4	72.1	71.7
4"	71.2	70.6	71.1	70.6	71.3	70.8	71.0	71.7	70.9
5"	69.8	69.9	70.4	69.9	69.7	70.2	69.5	70.2	70.1
6 "	17.7	17.4	17.9	17.5	17.6	17.5	17.4	18.1	18.1
$1^{\prime \prime \prime}$					94.7	94.7	94.8	96.0	95.0
$2^{\prime \prime \prime}$					71.4	72.0	71.9	72.5	71.9
$3 \prime \prime$					69.8	69.8	68.2	68.8	68.3
$4 \prime \prime$					71.4	71.0	74.0	74.7	74.3
$5 \prime \prime$					69.7	70.2	67.5	68.1	67.2
$6^{\prime \prime \prime}$					17.6	17.6	17.4	18.1	17.8
CO-2"	171.0	170.5	170.8	171.0	170.9	171.0	169.7	171.2	170.2
CO-2'"					171.9	171.8	171.3	171.5	170.5
CO-3"	172.0	171.4	172.0	172.0	170.1	170.1	171.5	170.6	171.2
CO-3"					170.1	170.1			
CO-4'"							172.6	172.0	172.0
$\mathrm{CH}_{3} \mathrm{CO}-2{ }^{\prime}$	21.2	20.7	21.4	21.0	21.1	21.8	20.8	21.6	21.8
$\mathrm{CH}_{3} \mathrm{CO}-2^{\prime \prime \prime}$					21.0	21.7	20.8	21.6	21.5
$\mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime}$	21.2	20.6	21.2	20.8	20.9	20.9	20.9	21.4	21.6
$\mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime \prime}$					20.9	20.9			
$\mathrm{CH}_{3} \mathrm{CO}-4{ }^{\prime \prime \prime}$							21.0	21.4	21.8

${ }^{\mathrm{a}} \mathrm{In} \mathrm{CDCl}_{3}$

10A and 10B. However, it should be noted that the monomeric 2',4'-di-O-acetylrhamnoside-emodin-anthrone, one of the moieties of the rhamnepalins (11A-C), was not isolated in the course of this study.

To study the structure-cytotoxicity relationships in this series, acetylation of compounds $\mathbf{1}$ and $\mathbf{2}$ was carried out. Treatment of $2^{\prime}, 3^{\prime}$-di-O-acetylfrangulin A (2) with acetic anhydride in pyridine for 24 h led to the known fully acetylated compound 4, which was identified after comparison with literature data. ${ }^{5}$ The regioselective acetylation at C-4' was carried out by treatment of $\mathbf{2}$ with acetic anhydride and DMAP and led to a new compound 12. This compound gave a major peak [$\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 543.1493$ (HRCIMS), corresponding to the molecular formula $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{12}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}$ possessed the same characteristics as that of $\mathbf{2}$ but differed in terms of the presence of an acetyl group at C-4' [(H-4' at δ
5.17 ($\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}$)]. Compound $\mathbf{1 2}$ has thus been identified as $2^{\prime}, 3^{\prime}, 4^{\prime}$-tri-O-acetylfrangulin A.
Acetylation of prinoidin 1 by acetic anhydride in the presence of catalytic amounts of pyridine led to the formation of a new compound, 13, which corresponds to the molecular mass of prinoidin plus 84 amu. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a signal for an acetyl group at $\delta 1.82 \mathrm{ppm}$ and a singlet at $\delta 5.05 \mathrm{ppm}$ corresponding to $\mathrm{H}-10$. Thus, these spectroscopic data led us to propose the structure of 13 as 4'-O-acetyl,10-C-acetylprinoidin, which comes from prinoidin (1) via the substitution at C-10 of an acylium group and acetylation at C-4'.
To prepare all the possible stereomers of the most biologically active natural dimers of chrysophanol bianthrones, emodin bianthrones, and chrysophanol-emodin bianthrones, synthetic work was carried out using both chrysophanol and emodin. ${ }^{16,17}$ The two substances were

Table 4. Cytotoxicity for KB Cells of Compounds I solated from Rhamnus nepalensis and Some Synthetic Derivatives ($n=3$)

compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$	compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$
doxorubicin	0.2	$\mathbf{7 A}$	1.1
chrysophanol	inactive	$\mathbf{7 B}$	2.5
emodin	inactive	$\mathbf{8}$	inactive
emodin anthrone	3.9	$\mathbf{9 A}$	1.3
physcion	inactive	$\mathbf{9 B}$	3.3
prinoidin (1)	0.045	$\mathbf{9 C}$	4.5
$\mathbf{2}$	1.9	$\mathbf{9 D}$	0.8
$\mathbf{3}$	inactive	$\mathbf{1 0 A}$	0.9
$\mathbf{4}$	inactive	$\mathbf{1 0 B}$	2.5
5A	0.2	$\mathbf{1 1 A}$	0.8
5B	1.2	$\mathbf{1 1 B}$	1
6A	1.2	$\mathbf{1 1 C}$	1.2
6B	3.4	$\mathbf{1 2}$	inactive
6C	1.8	$\mathbf{1 3}$	0.07
6D	1.4		

first reduced to the corresponding anthrones by SnCl_{2}, then coupled using FeCl_{3} in acidic conditions. Two diastereomers, 5A (meso-isomer) and 5B (racemic), identical to the natural compounds were obtained, together with the four diastereomers 6A-D and the two diastereomers 7A (mesoisomer) and 7B (racemic). The diastereomeric pairs were separated by HPLC on Si gel, and the corresponding enantiomers have been observed by using an analytical chiral OD column. To date, only the racemic compounds of each threo and meso diastereomeric couples have been isolated and characterized. However, the free rotation around the C-10/C-10' bond precluded any stereochemical assignment of these carbons by NMR techniques.

To specify the relative stereochemistry of C-10 and C-10 in compounds 10A and 10B, it should have been possible to hydrolyze the sugar portion to obtain emodin bianthrones 7A and 7B, but epimerization of the two stereocenters occurred. Indeed, treatment of emodin bianthrone 7A under acidic conditions led to compound 7B. This precluded any chemical hydrolysis of one of the diastereomers of prinoidin bianthrone. Enzymic hydrolysis was also unsuccessful.

Table 4 summarizes the cytotoxic activities observed against KB cells for the R. nepalensis isolates and some of their semisynthetic derivatives. Prinoidin (1) was 4 times more potent than the standard, doxorubicin. Chrysophanol bianthrone 5A was as active as doxorubicin, whereas its isomer (5B) was six times less active. In fact, compared to the selected standard, the various diastereoisomers of the bianthrones were observed to be significantly active but did not differ very much from each other in terms of cytotoxic potency. Consequently, a careful determination of the rel ative configuration of the dimers being impossible, it was also not possible to correlate the weak differences of activity with stereochemistry at $\mathrm{C}-10$ and $\mathrm{C}-10$. Compound 13 was 2 -fold less cytotoxic against KB cells ($7 \times$ $10^{-8} \mathrm{M}$) than prinoidin (1) (Table 4). Acetylation of the hydroxyl groups in the sugar part of compound $\mathbf{2}$ led to a loss of cytotoxicity.

When evaluated in vivo, prinoidin (1) was toxic when administered as a single intraperitoneal dose of $10 \mathrm{mg} / \mathrm{kg}$ to two mice grafted i.v. with P388 leukemia cells, with mice dying 2 days early after the injection. ${ }^{18}$ The medium dose of $5 \mathrm{mg} / \mathrm{kg}$ allows the two mice to survive 4 days, and the lower dose of $2.5 \mathrm{mg} / \mathrm{kg}$ proved inactive, the mice surviving 7 days, which is the average of survival for the two mice grafted.

Finally, by comparing these natural and synthetic bianthrones with doxorubicin, it seems that anthraquinones can serve as model compounds to synthesize additional
cytotoxic molecules. Doxorubicin and mitoxantrone, two well-known antitumor compounds, also contain anthraquinone moieties in the molecule.

Experimental Section

General Experimental Procedures. Optical rotations were measured at $25^{\circ} \mathrm{C}$ on a Perkin-Elmer 241 polarimeter. UV spectra were recorded on a Shimadzu UV-161 UV-visible spectrophotometer and IR spectra on a Perkin-Elmer Spectrum BX FT-IR instrument. The NMR spectra were recorded on Bruker AC-200, AC-250, AC-300, and AM-400 spectrometers, using TMS as internal standard. The NMR assignments were based on 2D COSY, HMQC, and HMBC NMR spectra. CIMS and HRCIMS were obtained on a Kratos MS-9 mass spectrometer, and EIMS on a Kratos MS-50 mass spectrometer. Column chromatography was performed using Si gel 60 H (Merck, Darmstadt, Germany). Purification of compounds 5A,B, 6A-D, 7A,B, and 11A-C was performed by semipreparative HPLC on Novapak Silica ($4 \mu \mathrm{~m}, 150 \times 3.9 \mathrm{~mm}$) or on an analytical Chiralcell OD column (Daicel Europa GmbH , Dussel dorf, Germany).

Plant Material. Leaves of Rhamnus nepalensis were collected at Pà Co, Mai Chau, Hoa Binh Province, 150 km west of Hanoi, Vietnam, in November 1995. Identification was provided by one of us (V. D.) and Tran Ngoc Ninh (Institute of E col ogy, NCST, Hanoi). Voucher specimens (VN 026) are deposited in the Herbarium of the Institute of Ecology and Biological Resources, NCST, Hanoi, Vietnam.

Extraction and Isolation. The dried ground fruits of Rhamnus nepalensis (460 g) were defatted by hexane, then extracted in a Soxhlet at room temperature with EtOAc, and the extract was evaporated under vacuum (60 g , yield 13%). Repeated column chromatography of the crude extract (4 g) and TLC and HPLC on silica gel afforded chrysophanol (32 $\mathrm{mg}, 0.8 \%$, heptane-EtOAc, $7: 3$), physcion ($12 \mathrm{mg}, 0,3 \%$, heptane-EtOAc, 7:3), chrysophanol bianthrones (5A,B) (36 $\mathrm{mg}, 0,8 \%$, heptane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6: 4$), emodin ($440 \mathrm{mg}, 11 \%$, hep-tane-acetone, 5:5), emodin-anthrone ($140 \mathrm{mg}, 3.5 \%$, heptaneacetone, 5:5), two chrysophanol-emodin bianthrones (6) (the first weighing $60 \mathrm{mg}, 1.5 \%$, heptane-EtOAc-acetic acid, 95: $5: 0.5$, the second $48 \mathrm{mg}, 1.2 \%$, heptane-EtOAc-acetic acid, 95:5:0.5), emodin bianthrones (7A) ($400 \mathrm{mg}, 10 \%$) and 7B (400 $\mathrm{mg}, 10 \%$), heptane-EtOAc-acetic acid, 95:5:0.5), then prinoidin (1) ($480 \mathrm{mg}, 12 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, 95:5), 2',3'-di-Oacetylfrangulin A (2) ($600 \mathrm{mg}, 15 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, $9.5: 0.5$), prinoidin-emodin bianthrones 9A ($24 \mathrm{mg}, 0.6 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ acetone, 9.5:0.5), 9B ($28 \mathrm{mg}, 0.7 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, 9.5:0.5), 9C ($56 \mathrm{mg}, 1.4 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, 9.5:0.5), and 9D (44 mg, $1.1 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, 9.5:0.5), 2'-O-acetylfrangulin A (3) (52 $\mathrm{mg}, 1.3 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1$) and 3'-O-acetylfrangulin A (8) ($12 \mathrm{mg}, 0.3 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1$), prinoidin bianthrones 10A ($24 \mathrm{mg}, 0.6 \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 8: 2$) and 10B ($24 \mathrm{mg}, 0.6 \%, \mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}-\mathrm{MeOH}, 8: 2$), and a fraction containing rhamnepalins ($\mathrm{CH}_{2}-$ Cl_{2}-acetone, $85: 15$), which were further purified by HPLC $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right.$-acetic acid, 65:35:0.1) to give rhamnepalins $\mathbf{1 1 A}(8 \mathrm{mg}, 0.2 \%)$, $\mathbf{1 1 B}(8 \mathrm{mg}, 0.2 \%)$, and $\mathbf{1 1 C}(9.6 \mathrm{mg}, 0.24 \%)$.

3'-O-Acetylfrangulin A (8): amorphous powder; UV (EtOH) $\lambda_{\max }(\log \epsilon) 433$ (4.27), 285 (4.38), 262 (4.53), 224 (4.77) nm; IR (KBr) $v_{\text {max }} 1750,1625,1605$ (CO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 12.3(2 \mathrm{H}$, brs, $\mathrm{OH}-8, \mathrm{OH}-1), 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$, $\mathrm{H}-5), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-4), 7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-7)$, 7.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-2$), 6.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}$), 5.98 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.0,9.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 4.95 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime}$), 4.58 (1 H , $\left.\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 2.00$ (3H, s, CH ${ }_{3} \mathrm{CO}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 191.2$ (C-9), 181.7 (C-10), 171.0 (COC-3'), 165.5 (C-8), 163.7 (C-1), 162.9 (C-6), 149.0 (C-3), 135.9 (C-5a), 133.8 (C-4a), 124.8 (C-2), 121.5 (C-4), 114.3 (C-1a), 112.2 (C-8a), 110.0 (C-5, C-7), 99.8 (C-1'), 75.7 (C-2'), 71.8 ($\left.\mathrm{C}-3^{\prime}\right), 70.4\left(\mathrm{C}-4^{\prime}\right), 69.0\left(\mathrm{C}-5^{\prime}\right), 21.9\left(\mathrm{CH}_{3}-3\right)$, 21.2 ($\mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime}$), 18.6 ($\left.\mathrm{CH}_{3}-\mathrm{G}^{\prime}\right) ;$ CIMS m/z 459 [MH]+ (35), 271 (100), 257 (40); HRCIMS [M + H+] m/z 459.1286 (calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{10}$ 459.1291).
Prinoidin-emodin bianthrone (9A): amorphous powder; $[\alpha]^{25} \mathrm{D} 0^{\circ}\left(\mathrm{c} 0.76, \mathrm{CHCl}_{3}\right) ;$ UV (EtOH) $\lambda_{\max }(\log \epsilon) 363$ (4.46),

277 (4.39), 225 (4.68), 203 (4.85) nm; IR ($\left.\mathrm{CHCl}_{3}\right) v_{\max } 3681$, $3625(\mathrm{OH}), 1630(\mathrm{CO}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; FABMS m/z 747 (M + Li) (70), 492 (8), 313 (37), 256 (40), 160 (100); HRCIMS [M + H] $+\mathrm{m} / \mathrm{z} 741.2171$ (calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{14}$ 741.2183).

Prinoidin-emodin bianthrone (9B): amorphous powder; $[\alpha]^{25} \mathrm{D}+6^{\circ}\left(\mathrm{c} 0.76, \mathrm{CHCl}_{3}\right) ;$ UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 363$ (4.46), 277 (4.39), 225 (4.68), 203 (4.85) nm; IR (CHCl_{3}) $v_{\max } 3681$, $3625(\mathrm{OH}), 1630(\mathrm{CO}) \mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; FABMS m/z 747 (M + Li) (70), 492 (8), 313 (37), 256 (40), 160 (100); HRCIMS $[M+H]^{+} \mathrm{m} / \mathrm{z} 741.2171$ (calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{14}$ 741.2183).

Prinoidin-emodin bianthrone (9C): amorphous powder; $[\alpha]^{25}{ }_{D} 0^{\circ}\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; FABMS m/z 747 (M + Li) (70), 492 (8), 313 (37), 256 (40), 160 (100); HRCIMS $[M+H]^{+} \mathrm{m} / \mathrm{z} 741.2171$ (calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{14}$ 741.2183).

Prinoidin-emodin bianthrone (9D): amorphous powder; $[\alpha]^{25}{ }_{\mathrm{D}}-16.5^{\circ}\left(\mathrm{c} 0.4 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; FABMS m/z 747 (M + Li) (70), 492 (8), 313 (37), 256 (40), 160 (100); HRCIMS [M + H] ${ }^{+}$m/z 741.2171 (calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{14}$ 741.2183).

Prinoidin bianthrone (10A): yellow crystals; mp 144$147{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+133^{\circ}\left(\mathrm{c} 1.06, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon)$ 361 (4.56), 277 (4.49), 209 (4.89) nm; IR (CHCl_{3}) $\nu_{\text {max }} 3677$, $3505(\mathrm{OH}), 1748$ (ester), 1637, 1619, 1607 (CO) cm ${ }^{-1 ;}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; CIMS m/z 993 [M + Na] ${ }^{+}$(100), 971 [M + 1] ${ }^{+}, 508$ (50), 360 (25), 279 (27), 150 (70); HRCIMS [MH]+ $\mathrm{m} / \mathrm{z} 971.2975$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}$ 971.2974).

Prinoidin bianthrone (10B): yellow crystals; mp 155$157{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+127^{\circ}\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon)$ 362 (4.44), $277(4.39), 210(4.75) \mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3677$, 3475 (OH), 1748 (ester), 1637, 1619, 1605 (CO) cm ${ }^{-1}{ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; CIMS m/z 993 [M + Na] ${ }^{+}$(100), 971 $[\mathrm{M}+1]^{+}, 508(50), 360(25), 279$ (27), 150 (70); HRCIMS [MH] ${ }^{+}$ $\mathrm{m} / \mathrm{z} 971.2975$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}$ 971.2974).

Rhamnepalin (11A): yellow amorphous powder; mp 177$179{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+47.2^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon)$ 361 (4.46), 278 (4.32), 206 (4.82) nm; IR (CHCl_{3}) $\nu_{\max } 3683$, $3657(\mathrm{OH}), 1747$ (ester), 1636, 1619, 1605 (CO) cm^{-1}; 1 H and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; CIMS m/z 969 [M - 1] (100), 682 (10), 516 (20), 485 (35); HRFABMS m/z $971.2979[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}$ 971.2972).

R hamnepalin (11B): yellow amorphous powder; mp 153$155{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+69^{\circ}$ (c 0.96, $\left.\mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon)$ 360 (4.42), 277 (4.37), $207(4.79) \mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\max } 3680$, 3657 (OH), 1747 (ester), 1636, 1619, 1605 (CO) cm ${ }^{-1}{ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; CIMS m/z 969 [M - 1] (100), 682 (10), 516 (20), 485 (35); HRFABMS m/z $971.2979[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20} 971.2972$).

Rhamnepalin (11C): yellow amorphous powder; mp 167$170^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+56.2^{\circ}\left(\mathrm{c} 1.12, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon)$ 361 (4.42), 277 (4.36), 206 (4.78) nm; IR (CHCl_{3}) $\nu_{\text {max }} 3680$, 3657 (OH), 1747 (ester), 1636, 1619, 1604 (CO) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Tables 2 and 3; CIMS m/z 969 [M - 1] (100), 682 (10), 516 (20), 485 (35); HRFABMS m/z 971.2979 [M + H]+ (calcd for $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{O}_{20}$ 971.2972).

Acetylation of Compound 2. A solution of $2^{\prime}, 3^{\prime}$-di-Oacetylfrangulin $\mathrm{A}(\mathbf{2})(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $(\mathrm{Ac})_{2} \mathrm{O}(1 \mathrm{~mL})$ and pyridine (1 mL) was stirred for 24 h at room temperature. After addition of water, the reaction mixture was extracted by CH_{2-} Cl_{2}. The combined organic phases were washed, dried ($\mathrm{Na}_{2}-$ SO_{4}), and evaporated. The residue, after preparative TLC, gave compound 4 (10.2 mg , yield 81\%) as an amorphous powder: $[\alpha]^{25} \mathrm{D}-80.8^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$, and other data comparable with literature values.

Preparation of Compound 12. To a solution of $2^{\prime}, 3^{\prime}-\mathrm{di}-$ O-acetylfrangulin A (2) ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) in (Ac$)_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 4-DMAP (3 mL), and the reaction mixture was stirred for 30 min at room temperature. After the addition of water, the reaction mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. The residue, after preparativeTLC, gave compound 12 (7.2 mg , yield 67%) as an amorphous powder: $[\alpha]^{25} \mathrm{D}-118^{\circ}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon)$

432 (3.96), 299 (3.92), 288 (4.06), 261 (4.24), 225 (4.48) nm; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3690(\mathrm{OH}), 1755,1628,1609\left(\mathrm{CO} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\right.$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-8$), 12.2 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-1$), 6.68 (1 H, brs, H-2), 6.70 (2 H, brs, H-4, H-7), 6.55 (1 H , brs, $\mathrm{H}-5), 5.55$ (1 H , brs, $\mathrm{H}-1^{\prime}$), 5.44 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 5.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), $5.17\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-10), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{CO}-2^{\prime \prime}\right), 2.02$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime}, \mathrm{CH}_{3} \mathrm{CO}-4^{\prime \prime}$), 1.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-$ 11), $1.25\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}-6^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.0$ (C-11), 191.6 (C-9), 171.2 (COC-3'), 170.0 (COC-2', COC-4'), 165.6 (C-8), 163.3 (C-1), 161.9 (C-6), 148.7 (C-3), 140.1 (C-4a), 137.5 (C-5a), 120.1 (C-4), 117.9 (C-2), 112.5 (C-1a), 110.5 (C-8a), 108.1 (C-5), 103.9 (C-7), 95.4 ($\left.\mathrm{C}-1^{\prime}\right), 70.6$ (C-2'), 69.5 (C-3'), 69.0 (C-4'), 68.2 (C-5'), 59.1 (C-10), $22.2\left(\mathrm{CH}_{3}-3\right)$, $20.9\left(\mathrm{CH}_{3} \mathrm{CO}-3^{\prime \prime}\right), 20.8\left(\mathrm{CH}_{3} \mathrm{CO}-2^{\prime \prime}, \mathrm{CH}_{3} \mathrm{CO}-4^{\prime \prime}\right)$, $17.5\left(\mathrm{CH}_{3}-6^{\prime}\right)$; EIMS m/z 542 [M] ${ }^{+}$(25), 498 (15), 273 (100), 241 (80); HRCIMS $\mathrm{m} / \mathrm{z} 543.1493[\mathrm{M}+\mathrm{H}]^{+}$(cal cd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{12}$ 543.1503).

Preparation of Compound 13. A solution of prinoidin (1) ($20 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $(\mathrm{Ac})_{2} \mathrm{O}(4 \mathrm{~mL})$ and pyridine $(25 \mu \mathrm{~L})$ was stirred for 5 h at room temperature. After washing, the reaction mixture was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent evaporated. The residue, after preparative TLC, gave compound $\mathbf{1 2}$ (17 mg , yield 76%) as an amorphous powder: UV (MeOH) $\lambda_{\text {max }}$ $(\log \epsilon) 357$ (3.86), 271 (4.06), 221 (4.12) nm; IR ($\left.\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ 3693 (OH), 1755, 1628, 1609 (CO) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.2(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-8), 12.0(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-1), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2 \mathrm{~Hz}, \mathrm{H}-4), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-5), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2$ $\mathrm{Hz}, \mathrm{H}-2), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}-7), 5.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$, $\left.\mathrm{H}-1^{\prime}\right), 5.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$, 5.05 (1 H , s, H-10), 3.85 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3$), 2.05 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}-2^{\prime}\right), 2.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}-3^{\prime}, \mathrm{CH}_{3} \mathrm{CO}-4^{\prime}\right), 1.82(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{COCH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}-6^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 202\left(\mathrm{CHOCH}_{3}\right), 191.2(\mathrm{C}-9), 181.7(\mathrm{C}-10), 170.5(\mathrm{COC}-$ $\left.2^{\prime}\right), 170.1$ (COC-3', COC-4'), 164.9 (C-8), 162.7 (C-1), 162.2 (C6), 148.9 (C-3), 135.5 (C-5a), 133.1 (C-4a), 124.7 (C-2), 121.6 (C-4), 113.6 (C-1a), 111.7 (C-8a), 109.6 (C-5), 109.3 (C-7), 95.4 (C-1'), 70.6 ($\mathrm{C}-2^{\prime}$), 69.2 ($\left.\mathrm{C}-3^{\prime}\right), 69.7$ (C-4'), $68.0\left(\mathrm{C}-5^{\prime}\right), 24.7$ $\left(\mathrm{CHOCH}_{3}\right), 22.3\left(\mathrm{CH}_{3}-3\right), 20.9\left(\mathrm{CH}_{3} \mathrm{CO}-3^{\prime}\right), 20.8\left(\mathrm{CH}_{3} \mathrm{CO}-2^{\prime}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CO}-4^{\prime}\right), 17.5\left(\mathrm{CH}_{3}-6^{\prime}\right) ;$ EIMS m/z $570[\mathrm{M}]^{+}(35), 528$ (55), 298 (10), 273 (15), 256 (100); HRCIMS m/z $571.1805[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{12}$ 571.1816).

Dimerization of Emodin Anthrone and Chrysophanol Anthrone: Compounds 5A,B, 6A-D, and 13A,B. A solution of emodin ($108 \mathrm{mg}, 0.4 \mathrm{mmol}$) or chrysophanol ($108 \mathrm{mg}, 0.4$ mmol) in acetic acid (10 mL) was added to a solution of SnCl_{2} $(303 \mathrm{mg})$ in concentrated $\mathrm{HCl}(0.9 \mathrm{~mL})$, and the reaction mixture was stirred for 5 h at $80^{\circ} \mathrm{C}$. After the addition of water, the reaction mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield emodin anthrone (79 mg , yield 74\%) or chrysophanol anthrone (98 mg , yield 94\%). To a sol ution of emodin anthrone (72 mg) and chrysophanol anthrone (77 mg) in EtOH (35 mL) was added a solution of $\mathrm{FeCl}_{3}(0.2 \mathrm{~g})$ in $\mathrm{EtOH}(21 \mathrm{~mL})$. The reaction mixture was stirred for 3 h under reflux, then, after addition of a solution (1 L) of $5 \% \mathrm{HCl}$, extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue, after preparative TLC and HPLC of the isolated fractions on a chiral OD column (heptane-2-propanol - acetic acid 8:2:0.02), gave compounds 5 A (4.2 mg), 5B (3 mg), 6A (6 mg), 6B (5.8 mg), 6C (8.1 mg), 6D (7 mg), 7A $(8.2 \mathrm{mg})$, and 7B (10 mg).
In Vivo Bioassay of Prinoidin (1). Prinoidin (1) was injected intraperitoneally to two mice CDF $_{1}$ grafted i.v. with P388 leukaemia cells according to a published technique. ${ }^{18}$

KB Cytotoxicity Assay. The assays were performed according to a published technique. ${ }^{19}$ The control used for comparison was doxorubicin ($\mathrm{IC}_{50} 0.058 \mu \mathrm{~g} / \mathrm{mL}$).

Acknowledgment. This study has been carried out in the framework of a program of cooperation between CNRS (France) and NCST (Vietnam). The authors acknowledge Mrs. M.-T. Adeline (HPLC) and Mrs. Gaspard (Service des Cultures Cellulaires, ICSN).

References and Notes

(1) Bruneton, J. Pharmacognosie, Phytochimie, Plantes Médicinales; Lavoisier, Tec Doc: Paris, 1999; pp 430-435.
(2) Tripathi, V. D.; Agarwal, S. K.; Rastogi, R. P. Indian J. Chem. 1979, 17B, 89-90
(3) Kinget, R. Planta Med. 1967, 5, 233-239.
(4) Abegaz, B. M.; Dagne, E. Bull. Chem. Soc. Ethiop. 1988, 2, 15-20.
(5) (a) Abegaz, B. M.; Peter, M. G. Phytochemistry 1995, 39, 1411-1414. In this paper, the compounds mentioned erroneously as frangulin B have to be called frangulin A derivatives as in the original publication. (b) Hörhammer, L.; Bittner, G.; Hörhammer, H. P., J r. Naturwissenshaften 1964, 13, 310-311.
(6) Lin, C.-N.; Chung, M.-I.; Lu, C.-M. Phytochemistry 1990, 29, 39033905.
(7) Coskun, M.; Satake, T.; Hori, K.; Tanker, M. Phytochemistry 1990, 29, 2018-2020.
(8) Weí, B. L.; Lin, C.-N.; Won, S.-J . J . Nat. Prod. 1992, 55, 967-969.
(9) Alemayu, G.; Abegaz, B.; Snatzke, G.; Duddeck, H. Phytochemistry 1993, 32, 1273-1277.
(10) Cameron, D. W.; Edmonds, J. S.; Raverty, W. D. Aust. J . Chem. 1976, 29, 1535-1548.
(11) Kinget, R. Planta Med. 1966, 4, 460-464.
(12) Majumder, P. L.; Chattopadhyay, A. J . Indian. Chem. Soc. 1985, LXII, 616-619.
(13) Lin, C.-N.; Wei, B.-L. J . Nat. Prod. 1994, 57, 294-297.
(14) Chung, M.-I.; Gan, K.-H.; Lin, C.-N.; Ko, F.-N.; Teng, C.-M. J . Nat. Prod. 1993, 56, 929-934.
(15) Dwivedi, S. P. D.; Pandey, V. B.; Shah, A. H.; Rao, Y. B. Phytother. Res. 1988, 2, 51-53.
(16) Falk, H.; Meyer, J .; Oberreiter, M. M onatsh. Chem. 1993, 124, 339341.
(17) Falk, H.; Schoppel, G. Monatsh. Chem. 1992, 123, 931-938.
(18) K ruczynski, A.; Col paert, F.; Tarayre, J.-P.; Mouillard, P.; Fahy, J .; Hill, B. T. Cancer Chemother. Pharmacol. 1998, 41, 437-447.
(19) Tempête, C.; Werner, G. H.; Favre, F.; Roja, A.; Langlois, N. Eur. J . Chem. 1995, 30, 647-650.

NP010030V

[^0]: * To whom correspondence should be addressed. Tel: 33(1)69823103.

 Fax: 33(1)69077247. E-mail: sevenet@icsn.cnrs-gif.fr.
 ${ }^{\dagger}$ Centre National de la Recherche Scientifique, Gif-sur-Y vette, France.
 \ddagger Institute of Chemistry, Hanoi, Vietnam.
 ${ }^{\text {§ }}$ Centre de Recherches Pierre F abre, Castres, France.
 ${ }^{\perp}$ To whom this work is dedicated. Deceased on March 10, 2000.

[^1]: ${ }^{\text {a }} \mathrm{CDCl}_{3}$. ${ }^{\text {b }}$ Value given for 2 H ; value given for 6 H

